1,240 research outputs found

    Temperature-extended Jarzynski relation: Application to the numerical calculation of the surface tension

    Full text link
    We consider a generalization of the Jarzynski relation to the case where the system interacts with a bath for which the temperature is not kept constant but can vary during the transformation. We suggest to use this relation as a replacement to the thermodynamic perturbation method or the Bennett method for the estimation of the order-order surface tension by Monte Carlo simulations. To demonstrate the feasibility of the method, we present some numerical data for the 3D Ising model

    On the occurrence of oscillatory modulations in the power-law behavior of dynamic and kinetic processes in fractals

    Full text link
    The dynamic and kinetic behavior of processes occurring in fractals with spatial discrete scale invariance (DSI) is considered. Spatial DSI implies the existence of a fundamental scaling ratio (b_1). We address time-dependent physical processes, which as a consequence of the time evolution develop a characteristic length of the form ξt1/z\xi \propto t^{1/z}, where z is the dynamic exponent. So, we conjecture that the interplay between the physical process and the symmetry properties of the fractal leads to the occurrence of time DSI evidenced by soft log-periodic modulations of physical observables, with a fundamental time scaling ratio given by τ=b1z\tau = b_1 ^z. The conjecture is tested numerically for random walks, and representative systems of broad universality classes in the fields of irreversible and equilibrium critical phenomena.Comment: 6 pages, 3 figures. Submitted to EP

    Statistically interacting quasiparticles in Ising chains

    Get PDF
    The exclusion statistics of two complementary sets of quasiparticles, generated from opposite ends of the spectrum, are identified for Ising chains with spin s=1/2,1. In the s=1/2 case the two sets are antiferromagnetic domain walls (solitons) and ferromagnetic domains (strings). In the s=1 case they are soliton pairs and nested strings, respectively. The Ising model is equivalent to a system of two species of solitons for s=1/2 and to a system of six species of soliton pairs for s=1. Solitons exist on single bonds but soliton pairs may be spread across many bonds. The thermodynamics of a system of domains spanning up to MM lattice sites is amenable to exact analysis and shown to become equivalent, in the limit M -> infinity, to the thermodynamics of the s=1/2 Ising chain. A relation is presented between the solitons in the Ising limit and the spinons in the XX limit of the s=1/2 XXZ chain.Comment: 18 pages and 4 figure

    On the center of mass of Ising vectors

    Full text link
    We show that the center of mass of Ising vectors that obey some simple constraints, is again an Ising vector.Comment: 8 pages, 3 figures, LaTeX; Claims in connection with disordered systems have been withdrawn; More detailed description of the simulations; Inset added to figure

    Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient

    Full text link
    In this paper we present and discuss results of Monte Carlo numerical simulations of the two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient. The extremes of the magnet are at temperatures T1<Tc<T2T_1<T_c<T_2, where TcT_c is the Onsager critical temperature. In this way one can observe a phase transition between an ordered phase (TTcTT_c) by means of a single simulation. By starting the simulations with fully disordered initial configurations with magnetization m0m\equiv 0 corresponding to T=T=\infty, which are then suddenly annealed to a preset thermal gradient, we study the short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m=m0m=m_0, we study the critical initial increase of the order parameter. Furthermore, by starting the simulations from fully ordered configurations, which correspond to the ground state at T=0 and are subsequently quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we perform stationary measurements (tt\rightarrow\infty) that are discussed in terms of the standard finite-size scaling theory. We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well established results obtained under equilibrium conditions

    FKBP5 Genotype-Dependent DNA Methylation and mRNA Regulation After Psychosocial Stress in Remitted Depression and Healthy Controls.

    No full text
    BACKGROUND: Polymorphisms in the FK506 binding protein 5 (FKBP5) gene have been shown to influence glucocorticoid receptor sensitivity, stress response regulation, and depression risk in traumatized subjects, with most consistent findings reported for the functional variant rs1360780. In the present study, we investigated whether the FKBP5 polymorphism rs1360780 and lifetime history of major depression are associated with DNA methylation and FKBP5 gene expression after psychosocial stress. METHODS: A total of 116 individuals with a positive (n = 61) and negative (n = 55) lifetime history of major depression participated in the Trier Social Stress Test. We assessed plasma cortisol concentrations, FKBP5 mRNA expression, and CpG methylation of FKBP5 intron 7 in peripheral blood cells. RESULTS: Genotype-dependent plasma cortisol response to psychosocial stress exposure was observed in healthy controls, with the highest and longest-lasting cortisol increase in subjects with the TT genotype of the FKBP5 polymorphism rs1360780, and healthy controls carrying the T risk allele responded with a blunted FKBP5 mRNA expression after psychosocial stress. No genotype effects could be found in remitted depression. CONCLUSIONS: The FKBP5 rs1360780 polymorphism is associated with plasma cortisol and FKBP5 mRNA expression after psychosocial stress in healthy controls but not in remitted depression. Preliminary results of the DNA methylation analysis suggest that epigenetic modifications could be involved

    Diffusive Thermal Dynamics for the Ising Ferromagnet

    Full text link
    We introduce a thermal dynamics for the Ising ferromagnet where the energy variations occurring within the system exhibit a diffusive character typical of thermalizing agents such as e.g. localized excitations. Time evolution is provided by a walker hopping across the sites of the underlying lattice according to local probabilities depending on the usual Boltzmann weight at a given temperature. Despite the canonical hopping probabilities the walker drives the system to a stationary state which is not reducible to the canonical equilibrium state in a trivial way. The system still exhibits a magnetic phase transition occurring at a finite value of the temperature larger than the canonical one. The dependence of the model on the density of walkers realizing the dynamics is also discussed. Interestingly the differences between the stationary state and the Boltzmann equilibrium state decrease with increasing number of walkers.Comment: 9 pages, 14 figures. Accepted for publication on PR

    Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains

    Full text link
    Experiments in coherent nuclear and electron magnetic resonance, and optical spectroscopy correspond to control of quantum mechanical ensembles, guiding them from initial to final target states by unitary transformations. The control inputs (pulse sequences) that accomplish these unitary transformations should take as little time as possible so as to minimize the effects of relaxation and decoherence and to optimize the sensitivity of the experiments. Here we give efficient syntheses of various unitary transformations on Ising spin chains of arbitrary length. The efficient realization of the unitary transformations presented here is obtained by computing geodesics on a sphere under a special metric. We show that contrary to the conventional belief, it is possible to propagate a spin order along an Ising spin chain with coupling strength J (in units of Hz), significantly faster than 1/(2J) per step. The methods presented here are expected to be useful for immediate and future applications involving control of spin dynamics in coherent spectroscopy and quantum information processing

    Plasma fibrinogen: now also an antidepressant response marker?

    Get PDF
    Major depressive disorder (MDD) is one of the leading causes of global disability. It is a risk factor for noncompliance with medical treatment, with about 40% of patients not responding to currently used antidepressant drugs. The identification and clinical implementation of biomarkers that can indicate the likelihood of treatment response are needed in order to predict which patients will benefit from an antidepressant drug. While analyzing the blood plasma proteome collected from MDD patients before the initiation of antidepressant medication, we observed different fibrinogen alpha (FGA) levels between drug responders and nonresponders. These results were replicated in a second set of patients. Our findings lend further support to a recently identified association between MDD and fibrinogen levels from a large-scale study
    corecore